Effects of nanosecond pulse electric fields on cellular elasticity.

نویسندگان

  • Diganta Dutta
  • Anthony Asmar
  • Michael Stacey
چکیده

We investigated the effects of a single 60 nanosecond pulsed electric field (nsPEF) of low (15 kV/cm) and high (60 kV/cm) field strengths on cellular morphology and membrane elasticity in Jurkat cells using fluorescent microscopy and atomic force microscopy (AFM). We performed force displacement measurements on cells using AFM and calculated the Young's modulus for membrane elasticity. Differential effects were observed depending upon pulsing conditions. We found that a single nsPEF of low field strength did not induce any apparent cytoskeletal breakdown and had minor morphological changes. Interestingly, force measurements and calculation of Young's modulus showed a significant decrease in membrane elasticity. A single nsPEF of high field strength induced stark morphological changes due to disruption of the actin cytoskeleton and a marked decrease in elasticity likely caused by irreversible membrane damage. We suggest that the cellular morphology is mainly dependent on stabilization by the actin cytoskeleton, while the elasticity changes are partially dependent on the cytoskeletal integrity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanosecond, high-intensity pulsed electric fields induce apoptosis in human cells.

Electroporation by using pulsed electric fields with long durations compared with the charging time of the plasma membrane can induce cell fusion or introduce xenomolecules into cells. Nanosecond pulse power technology generates pulses with high-intensity electric fields, but with such short durations that the charging time of the plasma membrane is not reached, but intracellular membranes are ...

متن کامل

Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review.

For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects ob...

متن کامل

High-Intensity Nanosecond Pulsed Electric Field effects on Early Physiological Development in Arabidopsis thaliana

The influences of pulsed electric fields on early physiological development in Arabidopsis thaliana were studied. Inside a 4-mm electroporation cuvette, pre-germination seeds were subjected to high-intensity, nanosecond electrical pulses generated using laboratory-assembled pulsed electric field system. The field strength was varied from 5 to 20 kV.cm and the pulse width and the pulse number we...

متن کامل

DNA Electrophoretic Migration Patterns Change after Exposure of Jurkat Cells to a Single Intense Nanosecond Electric Pulse

Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposur...

متن کامل

Induction of Cell Death Mechanisms and Apoptosis by Nanosecond Pulsed Electric Fields (nsPEFs)

Pulse power technology using nanosecond pulsed electric fields (nsPEFs) offers a new stimulus to modulate cell functions or induce cell death for cancer cell ablation. New data and a literature review demonstrate fundamental and basic cellular mechanisms when nsPEFs interact with cellular targets. NsPEFs supra-electroporate cells creating large numbers of nanopores in all cell membranes. While ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micron

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2015